

Reference Condition Approach: Advances Since 2000

Goal: Provide key considerations on how to develop numeric criteria based on a reference condition and recent applications

Outline

- Background
- Definition and application
- Site selection and classification
- Key concepts when using a reference condition approach
- Examples of successful applications of a reference condition approach

Background

- Adapted from the biocriteria effort for nutrient criteria derivation
- Highly variable application
 - Screening procedures for reference site selection
 - Selection of percentile
 - Linkage to designated uses or refined management goal
- Defined differently over time...

Defining "Reference Condition"

- Types of reference conditions (Stoddard et al. 2006, NLA paper):
 - Minimally disturbed condition
 - Historical condition
 - Least disturbed condition

- Working definition: In general, sites should be selected that reflect our management goal.
 - Supporting designated uses

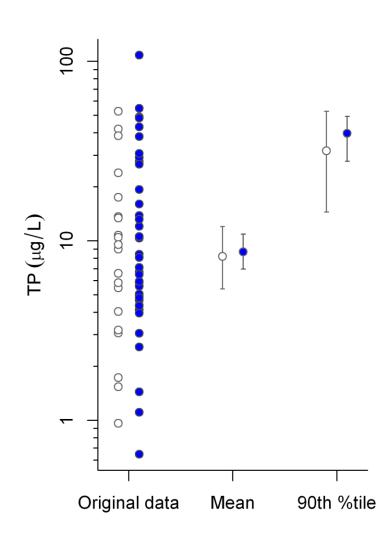
Reference Condition Approach

- Scientifically defensible approach for deriving numeric nutrient criteria
- Spatial and temporal applications:
 - Spatial: Identifying reference waters in a region
 - Temporal: Identifying reference time periods in a site
- Physical, landscape, biological screens used, for example:
 - Land cover
 - Habitat conditions
 - Biological assessment endpoints

Selecting Reference Sites

- Ensure sites selected accurately reflect the desired ecological condition or designated use support.
- Establish site screening requirements to ensure reference site quality.
 - Landscape development intensity index score
 - Biological condition index
 - Impairment status
 - Presence of point source dischargers
- Monitoring data are used to show how each reference site's waters are supporting designated uses.

Considering Data Quantity


The quantity of data should enable:

- Capturing variability across space/time (ideal case)
- Spatial/temporal representativeness
 - Site-specific Need considerable representation over time
 - Regional Need considerable representation over space

Considering Data Quantity

- Consider the confidence with which different aspects of the reference distribution can be estimated.
- Confidence in estimated percentiles depends on the number of samples (i.e., reference sites) and the percentile that is estimated.
 - Percentiles close to the edge of the distribution are estimated with less confidence than percentiles close to the mean.
 - The fewer the samples, the less confidence.

Considering Data Quality

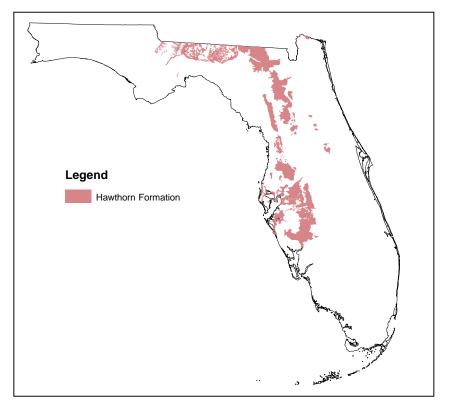
Elements of data quality important for criteria derivation:

- Ensuring data are verified and validated
- Having associated metadata, so data can be traced to a sampling site, date, and time
- Ensuring sample integrity was maintained
- Using approved EPA/state sample collection and laboratory analysis methods
- Sufficient use of quality control measures in the laboratory
- Records of instrument calibration and verification of performance

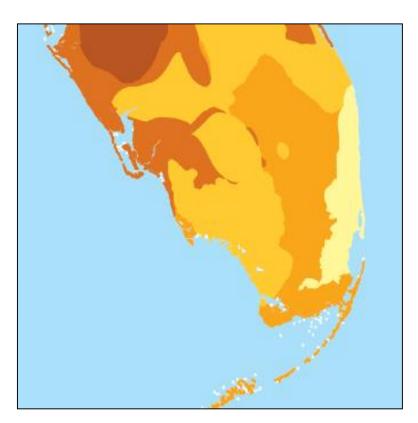
PEPAUnited States Environmental Protection Your Final Reference Data Set Look Like?

Reference site quality:

- Selecting the best of what is available Application of screens for disturbance, such as trends in biological endpoints, landscape development intensity, and other indications of human impact
- Using the data you have available, but still ensuring designated use support – application of screens for the above and also 303(d) impairment listings

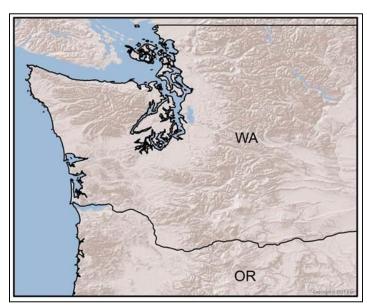

Classification of Reference Sites

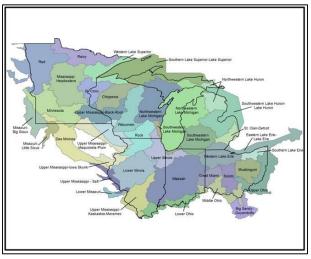
- Classification of water segments and reference sites ensures water quality expectations are appropriately represented for different types of sites.
- Classification factors (e.g., geological, hydrological, chemical)
- Examples:
 - Streams
 - Estuarine and coastal waters

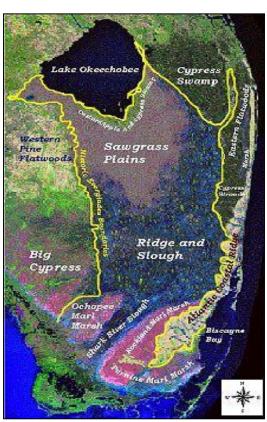


Classification by Geological Factors

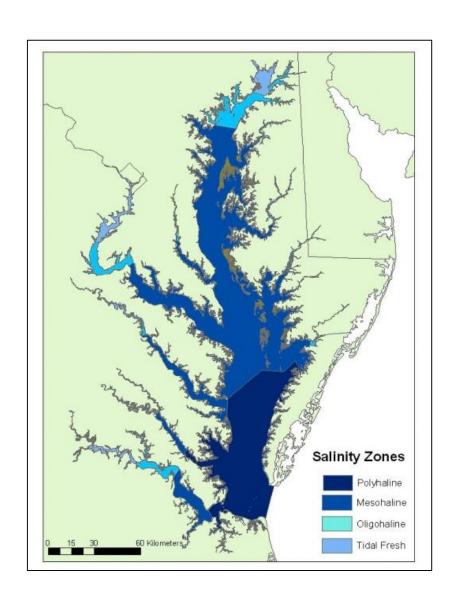
United States Environmental Protection Agency


Distribution of Hawthorn Formation (elevated phosphorus)



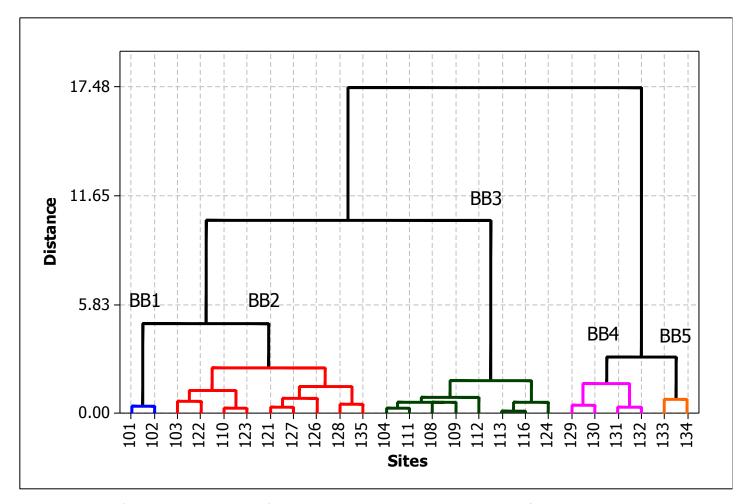

Mean values of bed-sediment phosphorus concentration within geologic map units

Classification of Hydrological and Ecological Factors


Elevation

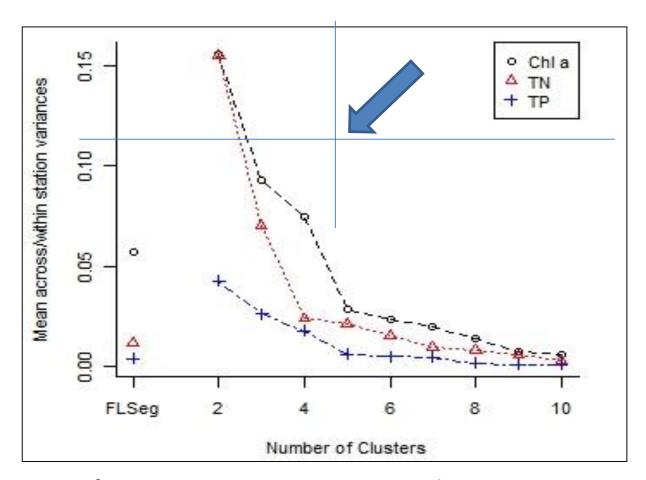
HUC-4 watersheds

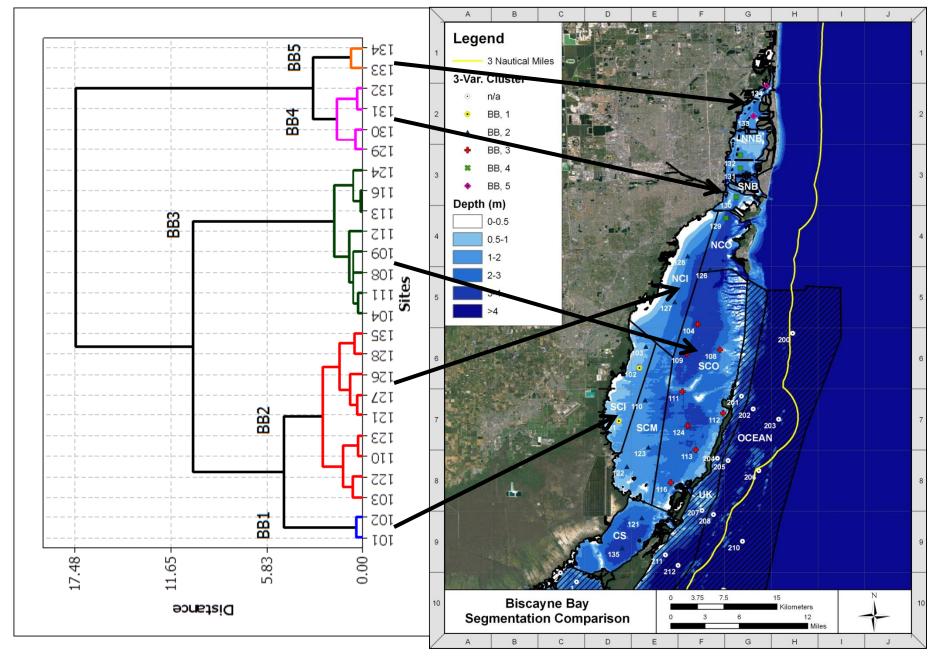
Landscape types



Classification by Chemical Factors

United States Environmental Protection Agency

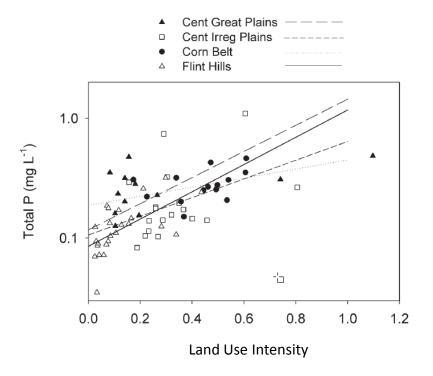

Classification by Chemical Factors


3-variable (TN, TP, and chl a) cluster analysis dendrogram for Biscayne Bay. Distance between clusters defined as Euclidean distance between standardized values of each variable.

Classification by Chemical Analysis

Ratio of mean across-site variance to mean within-site variance results from 3-variable cluster analysis for Biscayne Bay

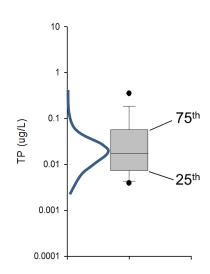
Key Concepts


- Finding sufficient reference sites:
 - What to do when you have a lack of reference sites?
- Selecting a defensible percentile:
 - Is there a magic algorithm?
 - Is there supporting scientific documentation?

Finding Sufficient Reference Sites

What if there are too few sites?

- Reference in time vs. space
- Paleolimnology
- Modeled reference condition



Source: Adapted from Dodds and Oakes (2004)

Selecting a Defensible Percentile

- Factors that might influence your decision include:
 - Quantity of reference sites
 - Condition of reference sites
 - Quantity of data based on quality screens
 - Statistical estimates of uncertainties
- Percentile selected must be protective of designated use
 - Typically 75th to 90th

Selecting a Defensible Percentile

- Also based on statistical reasoning
- For a small data set with greater heterogeneity, choose a lower percentile; for a large data set with greater homogeneity, choose a higher percentile
- Ties into assessment endpoint selection
 - Support your percentile choice with scientific literature and other available information

Reference Period Approach

- Approach to consider for a specific waterbody when:
 - There are insufficient regional reference waters
 - Current conditions might not meet reference criteria
 - Data exists from historic conditions that justifiably met reference criteria
- Need temporal screens:
 - For example:
 - Demonstrated attainment of other criteria during that time period
 - No evidence of adverse nutrient impacts
 - Pre-discharges
 - Trend data available support temporal reference

Example 1: Reference Period Approach in Estuaries

- Coastal lagoon estuary
- Minimally disturbed condition
 - No 303(d) listings for nutrients or dissolved oxygen
- Long-term data set available
 - Spatial and temporal representativeness

Example 1: Reference Period Approach in Estuaries (continuation)

- All data available from 1974–2009 were reviewed
 - No nutrient-related impairments were identified
 - Nutrient assessment endpoints were evaluated
 - Data screening is not needed
- Numeric nutrient criteria were calculated at the 90th percentile of annual geometric means
 - Water quality from the reference time period is likely protective of the designated uses

Example 2: Reference Period Approach in Coastal Waters

- Three regions (Tomlinson et al. 2004) used data out to 4 nautical miles.
- Satellite remote sensing provided extensive spatial and temporal coverage.
- Chlorophyll-a endpoint: a strong, reliable indicator of harmful biological change.

Example 2: Reference Period Approach in Coastal Waters (continuation)

EPA conducted a review of water quality information to arrive at a final reference data set:

- Reviewed 303(d) listings for nutrients, chlorophyll-a, and dissolved oxygen
- Removed segments adjacent to 303(d)-listed estuarine segments
- Consulted available scientific literature
- Evaluated satellite data trends in chlorophyll-a from 1998 to 2009

Calculation of Numeric Nutrient Criteria

- Derived annual geometric mean chlorophyll-a criteria at the 90th percentile of all annual geometric means of the screened data from 1998 to 2009, including and excluding *Karenia* brevis
- Frequency and duration of 1 in 3 years

Other Examples: Reference Condition Approach in Streams

Reference sites were selected using the following screening tools:

- Macroinvertebrate index values
- Were not listed on 303(d)
- Land use intensity in riparian buffer and watershed
- NO₃ < 0.35 mg/L (considered to be an indicator for groundwater sources of nutrients)

Other Examples: Reference Condition Approach in Wadeable Streams

The reference distribution was used as a line of evidence for setting the criteria values, among other approaches.

- Nutrient concentration data were compiled for each ecoregion.
- A percentile of 75 and up was chosen depending on data availability and ecosystem characteristics.
- When/if the data show that reference sites regularly manifest greater concentrations than the regional criterion, sitespecific criteria are considered within the reference range of acceptable concentrations.

United States Environmental Protection

Lessons Learned

- Definition of reference condition varies; however in all cases:
 - Reference conditions should support designated uses
 - It need not mean pristine
 - High quality data are developed through application of data quality objectives
 - Objective data screens are used to refine reference
 - It is critical the final data set accurately reflects the reference condition, including the assessment endpoints
- States have concerns with applying the reference condition approach when there are not many uncompromised sites. There are solutions for regions with heavily impacted sites.
- Defining acceptable levels of uncertainty (i.e., what is the correct percentile to choose?) should be informed by data.
- The reference condition approach is scientifically defensible when supported with appropriate rationales and data.